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The field of end-user robot programming seeks to develop methods that empower non-expert programmers 

to task and modify robot operations. In doing so, researchers may enhance robot flexibility and broaden the 

scope of robot deployments into the real world. We introduce PRogramAR (Programming Robots using Aug- 

mented Reality), a novel end-user robot programming system that combines the intuitive visual feedback of 

augmented reality (AR) with the simplistic and responsive paradigm of trigger-action programming (TAP) to 

facilitate human-robot collaboration. Through PRogramAR, users are able to rapidly author task rules and 

desired reactive robot behaviors, while specifying task constraints and observing program feedback contextu- 

alized directly in the real world. PRogramAR provides feedback by simulating the robot’s intended behavior 

and providing instant evaluation of TAP rule executability to help end users better understand and debug 

their programs during development. In a system validation, 17 end users ranging from ages 18 to 83 used 

PRogramAR to program a robot to assist them in completing three collaborative tasks. Our results demon- 

strate how merging the benefits of AR and TAP using elements from prior robot programming research into 

a single novel system can successfully enhance the robot programming process for non-expert users. 
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 INTRODUCTION 

he proliferation of general computing technology necessitated the development of end-user
ools, such as spreadsheets, for users who were not professional software developers. The
ncreasing number of robot deployments (more than 3 million robots operate in factories today
 61 ]) creates a similar need for end-user robot programming. In pursuit of this goal, prior work
n end-user robot programming has offered different programming paradigms (e.g., imperative
 40 ], dataflow [ 33 ]) and representations (e.g., Hierarchical Finite State Machines [ 59 ], Behavior
rees [ 64 ]) to aid non-experts with programming robots. Recent work has begun extending these
ethods by using mixed reality technologies to improve an end user’s understanding of robot

ctivities in 3D space [ 7 , 15 , 28 , 31 , 44 , 49 , 62 , 68 , 72 ]. However, these methods do not easily
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llow for programming complex reactive robot behaviors that are common in real-world robotics
pplications. Beyond the most common applications (e.g., manufacturing), we envision robots
laying a valuable role in assisting individuals with everyday tasks. These tasks may include
leaning dishes or putting away groceries, where reactive robot behaviors are often necessary for
oordinating interactions with humans. Such tasks require users define where objects are placed,
riggers for actions, and multiple pick-and-place activities. For instance, when a user washes a
ish and places it on a drying rack, a robot reacts by picking up the dish, drying it, and placing it
n a user-defined location within a cabinet. 

In pursuit of this vision, we combine the rich medium of Augmented Reality (AR) with
rigger-Action Programming (TAP) . TAP, also known as event-driven programming, has
ained popularity as a user-friendly approach for end-user programming, allowing users with no
rior coding experience to develop successful reactive programs [ 77 ]. As a result, TAP has been
dopted across a wide range of real-world domains, including project management, security sys-
ems, and smart hubs [ 69 , 78 ]. In TAP, users define a set of circumstances known as triggers that
nitiate actions once the triggering conditions are met. In the context of dishwashing, users can
reate a rule such as “IF a dish is on the drying rack, THEN dry the dish and place the dish in the
abinet.” This rule prompts a robot to wait until it detects a dish on the drying rack, picking it up
hen detected, drying it, then placing it in a pre-defined cabinet location. The simplicity of TAP po-

itions it to be an effective tool for non-expert users seeking to program robots for everyday tasks.
While prior work has explored the general notion of robot event-condition-action rules (e.g.,

 22 , 83 ]), TAP has only recently been investigated for end-user robot programming [ 48 , 52 , 73 ].
n this context, Leonardi et al. [ 48 ] used TAP to enable non-expert users to craft reactive social
obot behavior programs. Alternatively, Senft et al. [ 73 ] utilized TAP to enable non-expert users
o program coordinated robot actions for Human-Robot Collaboration (HRC) tasks. However,
hese existing TAP systems are constrained by a 2D screen development paradigm, which restricts
sers to defining programs and parameters in a manner disconnected from the actual operating
nvironment of the robot. Such setups have been observed to diminish users’ comprehension of the
ontextual aspects of their task [ 6 , 37 , 55 ]. Conversely, an Augmented Reality Head-Mounted

isplay (ARHMD) provides hands-free mobility, has a wider field of view, and supports users
n larger areas by allowing them to view the workspace from various perspectives. ARHMDs also
nable more accurate depth estimation of virtual imagery, providing better blending of virtual and
hysical environments than 2D screens. In all previous studies focusing on TAP for robotics, users
onsistently expressed a desire for visual feedback and debugging support when building their
rigger-action rules, as well as their own mental model of the system [ 48 , 52 , 73 ]. Our insight is to
nlock the untapped synergies that exist between recent developments in AR and TAP, which we
ctualize in developing PRogramAR as a new end-user robotics programming system. To do this,
e utilize an ARHMD to contextualize information directly in the user’s scene and thus providing

he following benefits. First, users can program the robot within the entire 3D workspace in which
t operates rather than being restricted to defining 2D zones on a tablet with a 2D field of view
rom the robot’s camera as in the work of Senft et al. [ 73 ]. Second, users can verify and monitor
he correctness of their program by visualizing a simulated version of the robot’s behavior via the
obot’s 3D digital twin. Third, integrating TAP within AR, rather than displaying it on a separate
evice (tablet or desktop), presents users with a cohesive and holistic system, reducing potential
onfusion and frustration from context switching across devices. Fourth, users can freely position
he AR TAP interface without physically holding it, enabling them to effortlessly monitor both the
hysical workspace and TAP rules simultaneously (useful in debugging). 
Contributions . We introduce PRogramAR , a system for supporting non-expert programmers with

uthoring reactive robot behaviors by adopting AR-based contextualization and simulation-based
CM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 15. Publication date: March 2024. 
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ule evaluation. By integrating known components—AR and TAP—we enhance the user’s capabil-
ty to coordinate actions effectively during collaborative tasks with a robot. To evaluate PRogra-

AR, we recruited 17 participants who used our system to author robot programs for three HRC
asks. In this study, HRC is used to describe a human-robot team working together toward a shared
oal, based on terminology from prior work [ 7 , 19 , 73 ]. Overall, we contribute the following: 

(1) PRogramAR, a system for making reactive programming of robot manipulators easier for
non-experts by combining AR and TAP; 

(2) A validation of the benefits of merging AR and TAP, with data collected from a diverse
set of end users with a wide age range; and 

(3) An open source code release of PRogramAR generalizable to various robots and AR head-
sets to foster reproducibility and encourage future research and extensions by the com-
munity, which can be found on the OSF website (https://osf.io/gvxu5) . 

 RELATED WORK 

ur work on PRogramAR is inspired by past research in robot programming, TAP, and AR. 

.1 Robot Programming 

rior research has investigated a variety of methods for robot programming. One prominent ap-
roach is that of skill demonstration (i.e., Learning from Demonstration (LFD) ), in which users
efine robot actions through kinesthetic teaching, teleoperation, or passive observation (see other
orks [ 10 , 71 ] for relevant surveys). One advantage of LFD systems is that programming is directly

mbedded in the robot’s operational context (i.e., how the robot moves in the real 3D environ-
ent); however, LFD can be difficult to generalize to new environments and is often used to teach
 robot primitive motions, rather than to build coordination mechanisms that enable collaborative
uman-robot tasks through reactive robot programs. Methods for program specification present an
lternative approach, where interfaces let users define and parameterize desired robot actions with
arying degrees of abstraction. For example, research has explored visual robot programming tools
here users allocate task execution through flow diagrams, behavioral trees, or block-based pro-
ramming interfaces [ 8 , 35 , 38 , 40 , 70 ]. However, to use such systems, end users are often required
o know fundamental programming concepts (e.g., variables, conditionals, loops), which may limit
ystem applicability. These systems also adhere to a traditional programming approach, requiring
sers to specify the whole robot program before execution. Moreover, the feedback provided by
hese systems is typically visualized on a 2D screen, thereby disconnecting it from the context of
rogram execution where the physical robot moves through 3D space. Likewise, teach pendants,
hich are currently the industry standard for end-user programming of repetitive robots tasks, can
e complex and difficult to use for individuals who are not trained professionals [ 45 , 66 ]. There-
ore, we have designed a new program specification system that eliminates the need for end users
o possess prior programming knowledge, and enables non-traditional programming workflows
hat cater to users of all backgrounds. Furthermore, we leverage AR to provide immersive, visual
eedback in the real operational space, directly connecting program development with program
xecution. 

.2 Trigger-Action Programming 

AP, which forms the foundation of popular tools such as If-This-Then-That (IFT T T), Zapier,
nd SmartThings, has been successful in engaging users at all levels of programming proficiency
 13 , 21 , 23 , 32 ]. Research has investigated various ways to refine this programming process by
mproving support for user mental model formation when designing their trigger-action sets
 39 ], understanding common bugs that occur in TAP [ 11 , 63 ], and explaining TAP behavior in an
ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 15. Publication date: March 2024. 

https://osf.io/gvxu5


15:4 B. Ikeda and D. Szafir 

u  

r  

m  

c  

a  

w  

S  

p  

c  

r  

t  

d  

m  

u  

c  

p  

i  

m  

w  

f  

s  

t

2

A  

w  

o  

i  

p  

r  

7  

i  

m  

f  

o  

m  

a  

v  

t  

c
 

o  

p  

b  

A  

5  

h  

s  

A

nderstandable manner [ 84 , 85 ]. More recently, researchers have begun to apply TAP to end-user
obot programming. For instance, a study by Leonardi et al. [ 48 ] found that TAP can be an effective
ethod for end users to personalize social behaviors for humanoid robots. Further research was

onducted by Manca et al. [ 52 ], who developed a visual analytics tool to understand the rules cre-
ted by end users. However, these systems focused solely on creating verbal responses to triggers
ithout considering scenarios where a user may want to coordinate physical tasks with a robot.

enft et al. [ 73 ] built on this work in their Situated Live Programming (SLP) system, which
rovides a TAP interface for physical task coordination between humans and robots. In SLP, users
an define regions in their workspace as zones containing objects and positions relevant to TAP
ules. SLP also incorporates live programming , which provides users with the flexibility to program
he initial robot actions, then gradually construct the complete program. With each step, users can
efine new trigger-action pairs based on the current state of the environment, facilitating incre-
ental robot program development [ 73 ]. In contrast, traditional programming techniques require

sers to specify the whole program before execution. Although promising, SLP uses a top-down
amera attached to the robot’s end-effector to visualize the scene on a tablet. This configuration
rohibits users from specifying zones outside the robot’s 2D camera view. In addition, the tablet
nterface poses challenges in debugging TAP rules, as users may find it difficult to simultaneously

onitor both the virtual TAP scene and the physical actions performed by the robot in the real
orld. Notably, a common message shared by users in prior work was that these systems lacked

eedback, such as the ability to observe rules in action before they were run on the actual robot or
upport for rule executability. To address these drawbacks, we leveraged mixed reality technology
o provide intuitive visual feedback during programming in the form of a novel TAP system. 

.3 AR Robot Programming 

R has gained popularity in robotics due to its ability to provide contextual information in situ

ithin a user’s environment, potentially improving situational awareness, system usability, and
verall user interactions (see other works [ 1 , 50 , 75 , 76 , 81 ] for recent surveys of mixed real-
ty robotics). Prior research has explored various forms of AR, including 2D overlay displays,
rojection-based displays, and AR tablets. The 2D overlay displays present a fixed view of the
obot’s workspace on a 2D computer screen, over which contextual information can be drawn [ 2 ,
3 ]. Projection-based displays directly project 2D visualizations into the user’s workspace, often
ncorporating interaction mechanisms such as gesture tracking, smart touch tables, or program-

ing wands [ 3 , 30 , 31 , 53 ]. Tablets offer mobility by overlaying AR content over the tablet camera
eed, enabling users to monitor the scene from any viewpoint [ 17 , 26 , 44 , 47 ]. Utilizing the benefits
f AR, which stem from overlaying virtual information onto the real world, each of these viewing
odalities have enhanced the robot programming process for users. However, 2D overlays have
 limited field of view, as well as inhibit the user’s ability to communicate depth parameters, and
isual feedback is viewed separate from the real world. Projection-based displays are difficult to
ransfer to new environments and restrict mobility, whereas tablets occupy the user’s hands and
onstrain the interface to within the small size of the screen. 

Therefore, ARHMDs have been used to alleviate these issues. ARHMDs free the user’s hands
f hardware, promote unrestricted mobility and interaction throughout the whole workspace, and
rovide information directly contextualized in the user’s real world. As a result, ARHMDs have
een used to help industrial workers define robot trajectories and action primitives [ 18 , 25 , 68 ].
RHMDs have also been used to communicate low-level robot sensor information to experts [ 19 ,
8 ] and to facilitate debugging robot programs for expert roboticists [ 42 ]. However, such systems
ave been designed for specific professional workers rather than for non-expert end users. In other
tudies, robot motion intent was communicated to users via the Robot Digital Twin but do not offer
CM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 15. Publication date: March 2024. 
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Fig. 1. We introduce PRogramAR, an AR TAP system that empowers non-expert users to program reactive 

robot behaviors. We describe the benefits of combining augmented reality with TAP to ground program 

development in the context of its execution (a) as implemented in our system architecture (b). 
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n easy way to author reactive robot actions for HRC tasks [ 72 , 80 ]. Our approach in developing
RogramAR is inspired by the work of of Kragic et al. [ 46 ], Bambu ̂sek et al. [ 7 ], and Gadre et al.
 29 ], who use AR to assist users in performing collaborative tasks with robots, to which we add
he lens of TAP for defining reactive robot behaviors. 

 SYSTEM DESIGN 

RogramAR is designed to make programming of robot manipulators easier by adopting AR-
ased contextualization and simulation-based rule evaluation in combination with the benefits
f TAP. Our system, which draws on prototype designs and findings from prior research projects
e.g., [ 9 , 15 , 48 , 72 , 73 , 80 ]), is composed of seven components: (1) AR Interface , (2) Rule Manager ,
3) Object Tracker , (4) Rule Evaluator , (5) Motion Planner , (6) Physical Robot , and (6) Robot Digital

win (Figure 1 (b)). An example of a full workflow from our system validation (Section 4 ) is depicted
n Figure 2 . In the following sub-sections, we describe each component of our system design. 

.1 AR Interface 

sers interact with PRogramAR through an AR Interface embedded directly within the human-
obot working environment (see Figure 1 (a)). This interface helps users create rules that are de-
ned by triggers and paired actions that dictate when and how a robot should perform a task.
o ground TAP rules in the real world, users create, move, resize, and delete 3D zones within the
eal environment to indicate regions relevant to triggers or actions (once created, each zone has
 different preset color and a unique zone number displayed above it for ease of reference). By
tilizing 3D zones, users gain complete expressibility as they can communicate depth informa-
ion in 3D spaces such as shelves. This is in contrast to prior work that relied on 2D zones, which
imited users’ ability to specify depth information. With our interface, PRogramAR supports both
raditional programming processes, where users define their full program before execution, and
ive programming. In live programming , users can program TAP rules while the robot is planning
regardless of planning time) or executing actions, although edits may require re-planning. 

.2 TAP Rules 

RogramAR currently supports combining triggers and actions into two types of TAP rules that
upport a user’s mental model of a program: If-Then rules, as previously supported by Senft et al.
ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 15. Publication date: March 2024. 
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Fig. 2. An example workflow for Task 2. Participants started with all objects in the robot’s workspace (a), 

then created zones for each box and each place position (b). The goal was to move the boxes to the exchange 

area so the participant could assemble the parts inside the boxes (c). Participants used the AR Interface to 

create various TAP rules to be run on the robot (d–f). 
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 73 ], and our own addition of While-Do rules [ 39 ]. Triggers are parameterized by objects , recog-
ized items known to the system (tracked by the Object Tracker, with tracking described more in
ection 3.5 ), conditions (e.g., “is,” “in”), and zones . In our system, the currently supported triggers
nclude when (1) objects are in a zone (e.g., Box 1 is in Zone 2) or (2) objects are not in a zone (e.g.,
ox 2 is is not in Zone 3). Actions are parameterized by a robot action (e.g., “move”), objects , and
ones . Due to the limited capabilities of our robot, the only supported action is moving an object
rom a zone or its current location, to another zone (e.g., move Box 2 inside Zone 3). When the
efined trigger is true, an If-Then rule executes its actions once before moving to the next rule. A
hile-Do rule performs its associated actions continuously as long as the condition is true before
oving to the next rule. For instance, in a scenario where multiple objects need to be transferred

rom one zone to another, an If-Then rule might move only one object before moving to the next
ule. In contrast, a While-Do rule might move all the objects before proceeding to execute the
ext rule. To summarize, the current rules, triggers, and actions supported by PRogramAR are as
ollows: 

—Rules : If-Then and While-Do 

—Trigger : Objects present within a zone 
—Trigger : Objects absent within a zone 
—Action : Moving objects from one zone to inside another zone 
—Action : Moving objects from any location to inside a zone. 

The simplest rule would consist of a single trigger, containing a single object-zone pair, and a
ingle action, also with a single object-zone pair. For example, a rule could be “If [Box 1] is [in]
Zone 1], then [move] [Box 1] inside [Zone 2].” Users can also specify rules of arbitrary complex-
ty by using additional conditions connected by AND or OR logical operators in the rule triggers.
CM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 15. Publication date: March 2024. 
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ach trigger can also have multiple actions connected by AND operators. Similar to SLP [ 73 ], PRo-
ramAR allows users to define, edit, and delete TAP rules at any time (prior, during, or post robot
xecution). This creates a live programming environment to aid with debugging and progressively
uilding reactive robot programs at runtime. In contrast to SLP [ 73 ], which prompts users to fix
ule priority conflicts, PRogramAR executes TAP rules in a user-specified order that can be ad-
usted as needed (see Figure 2 (f)). Moreover, PRogramAR leverages AR to make use of all three
imensions of the user’s workspace. This enables users to specify programs for placing a box on
 shelf or, in future real-world scenarios, moving a plate from a dish rack into a cabinet. Such pro-
rams are challenging to express in SLP [ 73 ], which relies on a top-down view, as it lacks depth
erception, making it difficult to communicate spatial relationships accurately. 

.3 Rule Manager and Evaluator 

s users create rules, they are maintained in a library within a Rule Manager, which communicates
ith other system components to manage rule options, available zones, and tracked objects while
ushing updates to the AR interface. One key feature that goes beyond prior TAP systems such
s SLP [ 73 ] or that of Leonardi et al. [ 48 ] is the Rule Evaluator. This component continuously
hecks whether the conditions of a rule are satisfied by the current state of the world. The Rule
anager then pushes updates to the AR Interface to reflect the status of each rule. The purpose of

his feedback is to assist users with debugging their created rules by explicitly indicating whether
 rule should or should not be executed. If the output of the Rule Evaluator conflicts with a user’s
xpectations, then they may need to either edit their rules, or validate the current state of the
orld or virtual zones. Triggers and actions that evaluate to true, and are therefore in the queue to
e executed, are colored green. Rules that evaluate to false, and are therefore not going to execute,
re colored red (see Figure 2 (f)). Red/green hues were chosen from a color blind accessible pallet
o provide a level of contrast easily differentiable by all users [ 60 ]. 

.4 Motion Planner and Robot Simulation 

RogramAR leverages the MoveIt! Task Constructor (MTC) , an open source software for robot
anipulator action planning that is compatible with more than 150 robot platforms using MoveIt

 36 ]. While our current implementation targets the Fetch robot, a mobile robot with a 7-degree of
reedom manipulator, other developers interested in utilizing or expanding PRogramAR can easily
dapt it to their own MTC-compatible robot by replacing the MTC bindings specific to Fetch (e.g.,
pdating the platform configuration in the launch file) [ 82 ]. When users choose to simulate or
xecute their program, the Rule Manager sends an action query to the Motion Planner. The MTC
ramework facilitates the planning of robot manipulator actions by solving individual sub-tasks
nd connecting them into a complete action plan [ 36 ]. For instance, a pick-and-place task can be
ivided into stages such as robot approach, grasp pose, and lift direction. Each stage is solved
sing a motion planning framework such as OpenRAVE or MoveIt!, and subsequently connected
equentially to generate the full motion plan [ 20 , 24 ]. 

If the Motion Planner successfully generates a feasible motion plan for the programmed action,
sers have the option to simulate individual rules using the Robot Digital Twin. The digital twin

s overlaid on top of the physical robot and demonstrates simulated motion plans contextualized
n the real world. Once users are satisfied the simulation, they may execute their program on the
hysical robot. During this time, a digital twin continues to mirror the robot’s actions at twice the
obot’s speed, enabling users to preview the robot’s behavior both before and during execution
see Figure 2 (b)). At times, the Motion Planner may be unable to return a valid trajectory due to
nreachable zones or objects, or obstacles that could cause collisions. In such cases, the system
otifies users with an error message projected above the robot’s head stating, “Error: Zone too far
ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 15. Publication date: March 2024. 
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r pick/place position too close to other boxes.” Users can then debug their program accordingly.
his approach is motivated by prior work emphasizing the importance of error detection and
revention in enhancing programming success [ 35 , 39 ]. 

.5 AR Apparatus and Tracking 

RogramAR makes use of an ARHMD to present the main AR Interface and visualizations to users.
hile our current implementation uses the HoloLens 2, PRogramAR is built on top of the OpenXR

pplication protocol interface (API), which allows any compatible mixed reality device, such as the
agicLeap or Meta Quest, to run our application. PRogramAR relies on having a single fiducial
arker placed in the workspace for aligning the coordinate frames of the virtual environment
ith the real world. The Object Tracker currently relies on external markers (in our validation
e used four Vive trackers with lighthouse base stations); in the future, this might be performed
irectly using visual processing of the camera feeds from the ARHMD and/or robot. We derived
he translation and rotation matrices necessary for aligning and calibrating our various coordinate
ystems (ARHMD, object tracking, and robot) as described by Peer et al. [ 65 ] such that user actions
nd program specifications could be accurately mapped into robot plans and AR visual feedback
as appropriately displayed. 

 SYSTEM VALIDATION 

o evaluate PRogramAR, we designed and conducted a validation study in which participants
rogrammed three collaborative tasks with a Fetch robot. 

.1 Environment 

articipants used PRogramAR in a controlled laboratory setting using a 1 . 2 m × 0 . 75 m table as the
hared workspace. On one side of the table there was a . 58 m × 0 . 4 m × . 11 m shelf, which the robot
ould be programmed to place objects on. Unlike previous TAP systems that were limited to a
D top-down view of the workspace, we demonstrate the benefits of an ARHMD by requiring 3D
lacements of objects on the shelf on the left side of the robot’s workspace (Figure 3 ). This poses
 challenge for 2D interfaces when communicating depth information for TAP rules, especially
hen the top-down camera view may be occluded by the roof of the shelf. To align with real-
orld safety standards for human-robot shared workspaces [ 54 , 79 ], the task space was divided

nto three areas: (1) Robot workspace , where only the robot was allowed to work during execu-
ion, (2) Exchange area , where both the participant and the robot could enter while working, and
3) Participant workspace , where only the participant could work (see Figure 3 ). 

.2 Programming Tasks 

or this study, participants programmed a Fetch robot to perform three tasks that grew in com-
lexity and therefore increased potential for working in parallel toward a shared goal: (1) Kitting,
2) Assembly-A, and (3) Assembly-B. These tasks were inspired by prior work [ 73 ] and real-world
se cases [ 54 ], and each had a time cap for completion. While kitting and assembly do resemble
anufacturing tasks, we believe the requirement of defining where objects are placed, triggers for

erforming actions, and multiple pick and place activities are transferable to other service applica-
ions (putting away dishes/groceries or tidying rooms) where similar specifications are necessary:

Task 1. Kitting (20-minute cap): Participants put two screws, one metal bar, one gray round fas-
tener, and one black round fastener into four different boxes. Participants then pro-
grammed the robot to move the boxes from the exchange area to particular locations
within the robot workspace (numbered white squares in Figure 3 ). 
CM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 15. Publication date: March 2024. 
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Fig. 3. The task workspace was divided into three areas, the middle of which both the participant and the 

robot could work in. The shelf on the left provided a 3D component to the workspace, which 2D interfaces 

cannot account for. 
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Task 2. Assembly-A (15-minute cap): Participants programmed the robot to move boxes from the
robot workspace into the exchange area . Once received, participants assembled four items
from pieces in each container, placing them into white bins located nearby. 

Task 3. Assembly-B (25-minute cap): Participants programmed the robot to move boxes from the
robot workspace into the exchange area . Once received, the participant assembled the
pieces from each container, put the assembled object back in the container, and pro-
grammed the robot to move the boxes from the exchange area to one of the four initial
positions in the robot workspace . 

To accomplish these tasks, the robot must be programmed to transfer objects to and from dif-
erent zones and object locations within the workspace. Participants were tasked with assembling
bjects that were chosen to be intentionally difficult to handle, with the aim of increasing the
robability of success for participants who collaborated in parallel, rather than sequentially, with
he robot. The collaborative behavior of working in parallel toward a shared goal was identified
hen a participant actively engaged in their own physical tasks while the robot simultaneously

xecuted its own user-programmed tasks. 

.3 Participants and Procedure 

or this study, approved by our university IRB, we recruited a total of 20 participants from our lo-
al community through our university’s online research recruitment platform. Since PRogramAR
s intended for applications beyond manufacturing (e.g., services in the home), we recruited par-
icipants of all age ranges and experience levels. Three participants had technical difficulties and
ere unable to continue the study (e.g., failures with objects trackers or Wi-Fi connectivity). One
articipant, aged 83, lacked the dexterity to manually assemble our task objects (screws and fas-
eners). Instead, this participant performed a modified version of our study, thus this participant’s
ata is analyzed separately (see Section 5 ). As a result, our primary dataset includes 16 participants
4 male, 10 female, 1 other, and 1 prefer not to say), summarized in Table 1 . The average age of
he participants was 26.88 years (SD = 9.14) across a range of 18 to 58 years. Eight participants
ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 15. Publication date: March 2024. 
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Table 1. Summary of Quantitative Results from Our Study 

Measure Result 

# users who completed Task 1 11 (68.75%) 
# users who completed Task 2 10 (62.5%) 
# users who completed Task 3 11 (68.75%) 

Mean completion time for Task 1 16 m 4 s (SD = 2 m 39 s ) 
Mean completion time for Task 2 12 m 40 s (SD = 2 m 16 s ) 
Mean completion time for Task 3 18 m 15 s (SD = 3 m 35 s ) 

# users who worked in parallel with the robot during Task 1 0 (0%) 
# users who worked in parallel with the robot during Task 2 9 (56.25%) 
# users who worked in parallel with the robot during Task 3 14 (87.5%) 

Mean user age 26.88 (SD = 9.14) 
# users with no programming experience 8 (50%) 

# users owning IoT device(s) 7 (43.75%) 
Mean prior experience using TAP (1–7) 3 (SD = 2.09) 

Mean prior experience using AR (1–7) 2.81 (SD = 2.16) 
Mean prior experience using robots (1–7) 2.19 (SD = 1.88) 

Mean SUS score 77.81 (SD = 11.79) 
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50%) reported having no computer programming experience, three (18.75%) reported 1 year or
ess, and five (31.25%) reported 3 years or more. Seven (43.75%) of the participants indicated they
wn an IoT device, such as a smart hub, and participants’ average familiarity with TAP was 3.00
SD = 2.09) using a single item with a 7-point scale. Prior to the study, participants reported having
ittle previous experience working with robots (M = 2.18, SD = 1.88) or using virtual reality or AR
echnology (M = 2.81, SD = 2.16 on 7-point scales) on a 7-point range. Our sample of participants
epresents a broad distribution of age groups with different levels of experience, which reflects
any of our target end users. 
Each participant’s session consisted of six phases: (1) Introduction, (2) Kitting, (3) Assembly-A,

4) Assembly-B, and (5) Conclusion. In the first phase, participants were given time to read and
ign a consent form. Then the researcher explained what they would be doing and showed the
articipant a 5-minute tutorial video explaining how to use PRogramAR to program the robot.
hen, the HoloLens was calibrated for the participant. Finally, participants were asked if they
ad any questions before beginning the first task. In the second phase, participants began the
rst task and a timer was started once they acknowledged they could see the interface in the
cene. For this task, they were given 20 minutes and were allowed to ask clarifying questions
n how the interface worked, but not how to complete the task. Once the robot correctly placed
he final object, the task was completed and the timer was stopped. In the third phase, for the
ssembly-A task, participants were given 15 minutes and were allowed to reuse the rules and the

ones created from the first task. The timer was started once the participant verbally confirmed
hey could see the interface in the scene. Once the robot correctly placed the final object, the
ask was completed and the timer was stopped. In the fourth phase, for the Assembly-B task,
articipants were give 25 minutes and were allowed to reuse the rules and the zones created from
he first and second task. The timer was started once the participant verbally confirmed they
ould see the interface in the scene. Once the robot correctly placed the final object, the task was
ompleted and the timer was stopped. In the fifth phase, following the final task, the researcher
onducted a verbal interview with participants to understand their experience using PRogramAR.
hen participants completed a questionnaire to gather demographics, and to assess the perceived
CM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 15. Publication date: March 2024. 
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sability of our system via the System Usability Scale (SUS) [ 14 ]. Finally, in the sixth phase, the
esearcher debriefed participants by explaining the goal of the study and compensated them with a
15 gift card. 

.4 Analysis Method 

o gather participants’ feedback regarding their experience with PRogramAR, we conducted and
ecorded a semi-structured verbal interview with a pre-defined list of questions focused on the
articipants’ interaction with the robot, the effectiveness of the programming tool, and their over-
ll impressions of PRogramAR. We chose semi-structured interviews because it offers a balance
etween structure and the flexibility to follow-up on unanticipated and interesting responses [ 27 ].
o transcribe the interview recordings, we used an intelligent verbatim approach, aligning spoken
ata with written conventions while preserving the intended meaning and structure of the original
peech [ 56 ]. Our goal was to convey the key points and ideas in the conversation, rather than how
t was said, and to improve readability. Following the transcription of our data, we applied thematic
nalysis, a method for identifying, organizing, and reporting patterns within a dataset, enabling us
o systematically summarize key features of verbal feedback gathered from participants. Thematic
nalysis is performed in six steps: (1) familiarization with the data, (2) generating initial codes,
3) searching for themes, (4) reviewing potential themes, (5) defining and naming themes, and
6) producing the report [ 12 ]. Our analysis revealed three themes, discussed in Section 5 : (1) user-
riendly robot programming, (2) supporting different levels of expression, and (3) supporting users
hrough in-situ contextualization. 

 RESULTS 

ollowing the completion of the study, participants gave our system an average SUS rating of 77.81
SD = 11.79), resulting in what is an above average rating. A number of participants struggled to
omplete specific tasks within the designated time constraints. We believe that these instances
re largely due to participants, many of whom had no programming, AR, or robotics experience,
aving a relatively short learning time (5 minutes) to become familiar with the many novel aspects
f our system. Overall, participants averaged 16 minutes, 4 seconds (SD = 2 minutes, 39 seconds)
o complete the first task, 12 minutes, 40 seconds (SD = 2 minutes, 16 seconds) to complete the
econd task, and 18 minutes, 15 seconds (SD = 3 minutes, 35 seconds) to complete the third, and we
elieve that with higher time caps, all participants would have eventually completed all tasks. In
eneral, Task 1 took longer than Task 2 because participants needed extra time to understand the
nterface and the AR interactions. Participants could also re-purpose TAP rules created in Task 1
or Task 2, which saved time. As expected, Task 3 took the longest amount of time because it
nvolved moving objects between the participant workspace and the robot workspace twice, rather
han once (see Figure 4 for more details). 

Over the course of the tasks, participants became comfortable, creating multiple rules at once
nd working in parallel with the robot. The number of participants who performed their tasks
n parallel with the robot were 0 (0%) in Task 1, 9 (56.25%) in Task 2, and 14 (87.5%) in Task 3.

hile this increase was affected by the task design (i.e., Task 3 was designed to generate more
pportunities for parallel task execution), participants stated that they became more comfortable
sing PRogramAR and progressively let the robot perform tasks simultaneously with them: 

P10 :“It was good once I got used to it. I think if you were in this environment, 
working this way . . . it will seem comfortable, to me once you do it a few times 
. . . By the third task, I was like, well, I’m going to be doing something while I’m 

having it do something.”
ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 15. Publication date: March 2024. 
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Fig. 4. The time it took for participants to complete each task. The programs created in Task 1 could be 

reused for Task 2, resulting in quicker completion times for Task 2. Task 3 took the longest time because it 

required more steps. Five participants in Task 1, six in Task 2, and five in Task 3 were unable to complete the 

tasks within the allotted time. Their times are not shown within the graphs. 
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This emphasizes that with time to become comfortable, PRogramAR allowed users to man-
ge their own tasks simultaneously with the robot’s tasks. In the following, we discuss other ad-
antages and disadvantages of PRogramAR reported by participants grouped by the themes that
merged from our analysis. 

.1 User-Friendly Robot Programming 

f the 16 participants, 13 (81.25%) commented on their positive experience using PRogramAR.
hese participants in particular appreciated its simplicity especially for non-experts, as reflected

n the following comment: 

P8 :“I don’t have to be a genius to be able to do this. It’s not super confusing . . . I 
was actually surprised about that.”

Moreover, seven (43.75%) participants reported that using TAP within PRogramAR was less
ntimidating than typical computer programming, whereas three (37.5%) participants without a
omputer science background perceived that TAP was comparable to their current work applica-
ions and therefore felt familiar. 

P11 :“I wasn’t really thinking about the coding element that much, which I think is 
good, probably in the sense of being user friendly. I don’t think normal coding is 
super user friendly.”
P16 :“I’ve done this type of if-then work in other database management . . . that’s 
why I feel like I got used to the rule language pretty quickly.”

This feedback highlights that TAP is perceived as user-friendly when applied in an AR environ-
ent and reinforces the notion that TAP can lower the barrier to entry for robot programming as

ound in prior work [ 67 ]. When participants were asked if they believed that there was a group
f users who would have a hard time learning this interface, four (25%) said that it would be their
randparents. On the contrary, one elderly participant (P7, age 83) who completed a modified
ersion of our study, due to difficulties manually assembling task objects, reported a positive ex-
erience learning and using PRogramAR. During the first two tasks, this participant was provided
dditional guidance from the researcher, who helped them develop successful program for the first
wo tasks. For the third task, due to the participant having difficulty putting objects together, they
ere instructed to put them to the side without assembling them, and to continue with the task

s usual. For this modified task, the participant was able to successfully build their program in the
CM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 15. Publication date: March 2024. 
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llotted time, without further guidance from the researcher. Including this participant’s response,
ur SUS score rises to 79.12 (STD = 12.57). This experience suggests that users of all ages can adopt
his technology if well-designed guidance is provided during the initial familiarization phase. This
articipant provided the following feedback on PRogramAR: 

P7 :“It was a simple interface to learn and just took a little to get used to . . . I have 
a 97 year old friend who refused to use a computer . . . he could have picked up on 

this I’m sure.”

To further enhance the programming experience for users, color-coded TAP rules were added to
he Rule Manager (see Figure 2 (f)). This feature indicated to users whether a rule could be executed
iven the current state of the world. Our feedback revealed that four (25%) participants found this
eature to be particularly helpful for verifying the planned execution of created rules. For example:

P15 :“I liked that it showed over here which rule is being executed and the high- 
lighted true false condition, like when it was off or when a box was in a zone it 
was highlighted true and the if condition column was highlighted green.”
P16 :“I realized that the conditions weren’t true because the box wasn’t in that zone. 
So that helped me move the zone back where the box was.”

This indicates that the color-coded TAP rule feedback served as an effective visual cue, enabling
sers to make informed adjustments to their program. In summary, our user responses reinforce
revious findings that the TAP paradigm can be adopted by non-expert users, and that proper
eedback regarding TAP rules can enhance the programming process [ 48 , 73 , 77 ]. Furthermore,
t is encouraging that these ideas hold when providing TAP in AR to people of varying ages and
ackgrounds. 

.2 Supporting Different Levels of Expression 

s discussed by Senft et al. [ 73 ], our work similarly highlights that TAP supports different levels
f expression. When it came to the final task, participants were able to apply their own unique
trategies. Of the 11 participants who successfully completed the third task, 7 (63.36%) set up mul-
iple zones for each object and placement position for their rules. All but 1 participant utilized a
ive programming approach throughout this task, continuously building and editing blocks of rules
see Figure 2 ). The remaining 4 (36.36%) participants preferred to use a smaller number of zones
hat they moved around the workspace as the task progressed, also utilizing a live programming

pproach. Across all three tasks, we observed a small number of participants adopting a traditional
rogramming process, defining all of the necessary rules for completing the task before execution.
pecifically, 1 (6.25%) participant in Task 1, 3 (18.75%) participants in Task 2, and 1 (6.25%) par-
icipant in all three tasks used a traditional programming approach. Although participants had
he freedom to choose their strategies, it did not guarantee that their approach would be effective
r successful. One challenge that 5 (31.25%) participants encountered was keeping track of multi-
le low-level rules. This was because participants often implemented too many zones and If-Then

ules. For example: 

P9 :“When I was adding the extra conditions and extra actions, I couldn’t remember 
which ones I had already added . . . there’s just a lot going on.”

Seven (53.84%) participants recognized that there might have been a more optimal approach
han their initial implementation. Participants often attributed this difficulty to the time limit that
reated a sense of pressure to quickly incorporate multiple If-Then rules, which was the perceived
asiest path. For example: 
ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 15. Publication date: March 2024. 
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P5 :“I think if I had more time, I would have experimented . . . For the third test, I 
started to look at the other command, While-Do , to see what that meant. If I had 

more time to think of a more finessed trigger command, just but because the If- 
Then was familiar, and I knew it could still execute the task at hand.”

Therefore, although participants were given the flexibility to generate TAP rules how they
anted, future research should explore ways to assist users by automatically generating high-
uality rules that participants may modify after its creation. This becomes particularly crucial as
he complexity of real-world scenarios increases with a larger number of available rules, objects,
nd zones. 

.3 Supporting Users through In-Situ Contextualization 

 major characteristic of AR is its ability to merge virtual and physical worlds. Previous research
as examined this property to improve robot programming using ARHMDs [ 7 , 16 , 18 ]. One of the
enefits of incorporating an ARHMD into robot programming is that users are able to engage with
he AR interface from anywhere in their workspace, unencumbered by a physical monitor. This
enefit was recognized by two (12.5%) participants: 

P16 :“I like that no matter where I was sitting, I could kind of engage the interface.”
P17 :“I like that if you feel like using this at home, you wouldn’t have a bunch of, 
you might have a monitor, but it would just be like this and be pretty simple.”

Despite this positive feedback, one participant mentioned an alternate viewpoint. They would
ave preferred using a computer, since it was what they were used to, indicating that some users
ay be resistant to adopting technologies that are perceived as disruptive to existing workflows.
nother motivation for incorporating an ARHMD was to enable users to visualize the entire
orkspace in which they were operating, rather than being limited to a single camera’s point
f view. During our study, two (12.5%) participants mentioned that they appreciated this feature.
or example: 

P2 :“I like that you can see what’s actually happening. I used VR glasses . . . and 

that was one of the ones where it’s a video game where you can’t really see your 
surroundings. So it was cool how I have an idea about where you are, but also 

seeing this other things.”

Furthermore, multiple participants successfully completed each task by utilizing PRogramAR
o define 3D location parameters on the shelf, which is difficult to do in prior work that utilized
D screens. Another crucial feature that was provided by PRogramAR was the simulation compo-
ent, which displayed motion plans using the Robot Digital Twin. This feature has been shown
o improve safety and control in robotics applications when provided via an ARHMD [ 4 , 37 , 72 ].
even (43.75%) participants mentioned using the simulation to build confidence in their program,
ith comments including the following: 

P5 :“Once I was able to have the If-Then statements do the simulation and make 
sure that it did the task as I intended, I felt pretty confident.”
P20 :“I think it was better when I simulated it because at least I knew there was a 
pass . . . it made me feel better about it, doing it the way that it was supposed to 

and also just making sure that whatever I put as the rule was correct.”

Another participant envisioned the benefit of using the simulation tool when programming
ore complex tasks for service robots deployed in the home: 
CM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 15. Publication date: March 2024. 
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P13 :“For even more complicated tasks, like household chores or something robots 
were capable of, that would be really helpful to see like exactly what’s going to 

happen once you program some set path or set of actions.”

However, similar to prior observations (e.g., [ 16 ]), as participants became familiar with PRogra-
AR and the capabilities of the robot, 11 (68.75%) participants no longer found it necessary to rely

n the simulation tool after the first task. One limitation of our simulation caused by the motion
lanner was if a goal was located too far for the robot to reach or if occluding objects prevented
he robot from grabbing an object, no motion plan would be generated. Therefore, instead of pro-
iding a simulated motion plan, error messages describing these edge cases would be displayed
bove the robot. Consequently, four (25%) participants struggled with the final task because they
ad difficulty deciphering the meaning of the error messages. For example: 

P6 :“I wanted to know what that error meant about the zone. There was no guidance 
on the panel . . . at one point I realized that I had accidentally moved one of my 

zones away from where I thought it was. I didn’t realize that I had done that.”

Therefore, future research should continue to explore methods of integrating error feedback
hat naturally guides non-expert users toward identifying the source of program errors. Overall,
articipant feedback provided promising evidence regarding our motivation to integrate TAP into
n ARHMD environment. For instance, participants derived confidence from using an ARHMD
o verify their program using the simulation tool for the first task. However, more work is nec-
ssary to further understand the effectiveness of our system in the context of non-expert robot
rogramming. 

 DISCUSSION 

n this study, we aimed to explore how the benefits of AR may enhance the process of program-
ing reactive robot behaviors using TAP. First, our work confirms prior findings demonstrating

hat TAP is a user-friendly approach for enabling non-experts to programming robots. We ob-
erved PRogramAR accommodating varying levels of expressivity, with some participants work-
ng in parallel with the robot, whereas others worked sequentially, and most of the participants
nstinctively applied a live programming approach. It is also encouraging to see that these findings
old when providing TAP in AR to people of varying ages (e.g., 18–83) and backgrounds, as mul-
iple participants were able to complete the tasks within the given time frame using our system.
econd, the inclusion of AR visualizations, particularly the 3D digital twin simulation, provided
ultiple users with confidence in their program execution. Participants also appreciated the abil-

ty to freely position the AR Interface anywhere in the scene and how AR allowed them to work
ithin the entire human-robot workspace. We believe that by combining AR and TAP, our design
f PRogramAR provides a starting point for future AR systems to build upon to provide richer ex-
ressions and visual debugging capabilities to users, thereby continuing to improve the end-user
obot programming experience for all. 

.1 Limitations and Future Work 

lthough our validation of PRogramAR shows promise, limitations and future challenges remain.
or example, the tasks programmed by users in our study were abstract (pick-and-place, generic
ssembly, etc.) and limited by the object tracking and manipulation capabilities of our system.
uture work should examine more realistic and complicated tasks that initially motivated our
ork, such as tidying rooms or putting away dishes. To enable the specification of TAP rules for
ore real-world tasks, our system needs to incorporate the following: (1) a more advanced object
ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 15. Publication date: March 2024. 
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etection and tracking algorithm such as Yolo [ 43 ]; (2) precise low-level manipulation capabilities
hat include generalizable object grasping techniques (e.g., Contact-GraspNet [ 74 ]) and actions
uch as twisting, opening, or deictic gestures (e.g., LFD [ 71 ]); and (3) increased TAP rule express-
bility by including more object states such as dirty or clean dishes, social behaviors [ 48 ], and
rigger-action rules (e.g., As-long-as-Do, If-When-Then [ 39 ]). However, to utilize these capabili-
ies, PRogramAR will need to assist users with defining more complex robot programs. One way
o do this is through virtual kinesthetic teaching, where users directly manipulate a robot’s digital
win to fine-tune action plans. Researchers could also utilize the AR headset’s egocentric camera
o record users physically demonstrating tasks. This demonstration could then be translated into
arameters for robot action programs. Developing such a system also unlocks opportunities to

everage AR’s advantages in larger spaces, where users will need to create and keep track of more
ules and virtual objects. For example, the Robot Digital Twin could demonstrate complex tasks
ike cooking and depict changes in object states (e.g., before and after food is cut or cooked) in a
arger kitchen environment. In lengthy tasks, a simulation tool could condense robot actions into
 shorter time frame, facilitating quick debugging by users. Studies within larger environments,
n which the workspace cannot be covered by a single viewpoint, may lead to greater insight into
he benefits of AR over a 2D interface. However, these capabilities currently pose as challenges
or future AR robot programming research, as they are not yet available in existing AR systems.
nother limitation of our study was the long planning times of our mobile manipulator. This was
 limitation of the solver that would cause the robot to collide with objects if planning was done
oo quickly. To address this issue, future systems could continuously compute and store motion
lans to be used when an action is triggered. In addition, reducing the planning time for future
ystems will help introduce more aspects of live programming , which could allow users to initiate
e-planning of robot trajectories quicker. Also problematic was the task times that constrained the
sers. This constructed an artificial limitation that prevented some participants from fully explor-

ng the interface and creating desired rule sets. Therefore, future work might increase the task time
r incorporate state of the art language models such as GPT-4, which could quickly provide ap-
licable rules for participants to reduce their mental load [ 34 , 41 ]. For example, participants could
escribe high-level goals using natural language, which could then be input into a large-language
odel. Then, the model could generate the robot program rules and provide users with a subset

f task relevant trigger and action parameters for program customization. This approach would
rovide users with code templates, eliminating the need to build rules from scratch. Moreover, this
ould reduce the cognitive load for participants as they work with larger rule sets, a consequence
f more complex tasks, environments, and advanced robotics systems. Finally, future work should
nvestigate how to continue to incorporate error feedback that seamlessly guides non-expert users
o the source of program bugs. For example, PRogramAR could be improved by providing a sim-
lated motion plan that highlights problematic collisions that may occur, rather than describing
rrors in plain language [ 5 , 51 , 57 ]. 

 CONCLUSION 

n this work, we presented PRogramAR, a novel AR trigger-action robot programming system
hat empowers non-expert users to create reactive robot behaviors for collaborative tasks. In the
evelopment of PRogramAR, we integrated concepts from various domains of robot program-
ing and AR interface research into a unified and comprehensive system. Specifically, PRogra-
AR introduces a unique combination of TAP, offering a high-level abstraction of robot program-
ing concepts, and AR feedback that is contextualized directly within the user’s environment to

acilitate the construction of accurate mental models of the programmed behavior. In our sys-
em validation, individuals of different ages and levels of experience successfully developed and
CM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 15. Publication date: March 2024. 
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eployed programs that enabled them to work in collaboration with the robot toward a shared
oal. Moreover, the feedback received from participants support the advantages of merging AR
nd TAP in the context of robot programming. We look forward to further explorations of this
ork in pursuit of a universally user-friendly robot programming system. 
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