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Fig. 1: We present new methods for reasoning about errors resulting in one or more participants being undetected in conversational 
groups. The top row shows real-world photos, the bottom row shows the robot’s perception. A) Three people are in a conversation 
with a robot and detected (noted with hats). B) A new participant joins the conversation and is not detected. C) Our algorithms 
predict both the number of missing people (1 in this case) and their likely position, enabling the robot to behave more naturally.

Abstract—Robots that operate in social settings must be able to 
recognize, understand, and reason about human conversational 
groups (i.e., F-formations). While several algorithms have been 
developed for identifying such groups, there has been little 
research on how robots might reason about inaccuracies following 
group classification (e.g., recognizing only 4 of 5 group members). 
We address this gap through a data-driven approach that builds 
knowledge of human group positioning. By analyzing multiple 
conversational group data sets, we have developed a system for 
identifying high probability regions that indicate areas where 
people are likely to stand in a group relative to a single anchor 
participant. We use knowledge of these regions to train two 
models, which we implement on a social robot. The first model 
can estimate the true size of a partially-observed conversational 
group (i.e., a group where only some of the participants were 
detected). Our second model can predict the locations where any 
undetected participants are likely to reside. Together, these mod- 
els may improve F-formation detection algorithms by increasing 
robustness to noisy input data.

Index Terms—F-formations, Social robot, Human-Robot Inter- 
action (HRI), Conversational groups, Data-driven algorithms

I.  I  NTRODUCTION

Robotic technologies are advancing at a rapid pace and are 
driving the integration of robots into new environments, such 
as homes and personal spaces, in which they will interact 
closely with people. For example, social robots are now being 
used to greet travelers in airports, welcome guests in hotels, 
and provide directions in shopping malls [1]–[6]. Enabling 
robots to be aware of how many people are engaged in an 
interaction with them is a key feature for supporting this 
transition. Understanding interaction groups can help enable 
situated spoken language interaction [7], enhance socially- 
aware navigation in human environments [8], improve natural
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behavior generation for robots [9], and sustain user engagement 
with robots [10]. 

Being in a conversational group is relatively easy for humans; 
we are able to position ourselves naturally in conversational 
groups, acknowledge newcomers, etc. without conscious effort. 
However, this is challenging for social robots that may interact 
with one or more people simultaneously due to sensor limi- 
tations and the dynamic nature of conversational groups [11]. 
Many studies have explored the detection of conversational 
groups by studying proxemics [12], [13], the field of spaces 
around humans in social settings [14]. Conversational groups 
are also referred to as F-formations: “An F-formation arises 
whenever two or more people sustain a spatial and orientational 
relationship in which the space between them is one to which 
they have equal, direct, and exclusive access” [15]. 

F-formations can appear in different arrangements: circular, 
L, side-by-side, and vis-a-vis. Circular arrangements are formed 
when there are more than two people in a conversational group, 
whereas the other three arrangements are most commonly 
formed when there are only two people in the group. Each 
arrangement can provide some information about the interaction 
happening in the group. Kendon [15] describes how L- 
arrangements happen when two people are in cooperative 
interactions, whereas vis-a-vis is preferred for competitive 
interactions. Side-by-side arrangements occur when two people 
are observing an object, such as a poster on the wall, or 
when both standing at the edges of a scene against walls [13]. 
Understanding these F-formation features has been used to 
improve many human-computer interactions [16]–[20]. 

Prior work has moved the state-of-the-art toward more 
accurate F-formation detection [12], [13], [21], [22], but 
imperfections still remain. There are three challenges in this 
field. First, input sensors, such as RGB or depth cameras, may 
produce noisy data due to light conditions or occlusions. As 
such, the input data may not accurately capture the whole scene. 
Second, all human detection algorithms contain some amount of 
error and noise [23], [24]. This may lead to falsely identifying 
objects in the scene as a human (i.e., false positives), not 
detecting a human in the scene (false negatives), or inaccurate 
estimations of head and/or body orientations (as reported in 
[11]). Finally, F-formation detection algorithms are not fully 
robust to the dynamics of human groups [12], [13], [21]. 

These problems can negatively impact interactions when 
robots are deployed in the real world as social assistants. In 
particular, this work was motivated by our observation of issues 
with false negatives in F-formation detection with the Microsoft 
“directions” robot and the Disney “character” robot. Detection 
errors for such robots can lead to missed humans in the group 
feeling ignored or unimportant, thus undermining the central 
goal of the robot deployment. Moreover, we have found that 
continuous interaction with groups over time does not often 
solve misidentifications; instead, detection errors can percolate 
over time and make misidentifications more likely in the future. 
As a result, we believe it is essential for social robots to be 
able to reason about their own confidence in user detection, 
and ideally correct any errors.

To address this problem and improve the state-of-the-art, we 
introduce the notion of high probability regions. These regions 
represent the spaces in F-formations in which people tend to 
occupy. Sec. IV describes how we derive these regions through 
analyzing two data sets on human conversational groups. In 
Sec. VI, we introduce a pair of classifiers that demonstrate the 
utility of understanding such regions, where partial data on 
F-formation positions can be used to predict the full size of the 
group (our first classifier) and the likely positions of missing 
F-formation participants (our second classifier), even when 
noise is injected into the initial observations. These classifiers 
may improve the accuracy of prior approaches for detecting 
F-formations and potentially be used as a sanity check or way 
of computing classification confidence for existing detection 
algorithms, which we demonstrate with in-person human robot 
interactions described in Sec. VIII.

II.  R ELATED WORK

The importance of detecting F-formations has motivated 
research in how such groups might be identified across a variety 
of disciplines, including Computer Vision [12], [13], [25]–[27], 
Human-Computer Interaction (HCI) [21], [28]–[32], Signal 
Processing & Sensor Fusion [33]–[35], System Engineering 
[36], [37], Natural Language Processing [38], Robotics [7], 
[39], [40], and Multi-modal Interaction [10], [41]. 

At a high-level, such research follows a standard two-step 
process for identifying conversational groups. The first step is to 
determine the relative positions and orientations of participants, 
which can be achieved with a variety of sensors, such as depth 
cameras, RGB cameras, motion capture cameras, LiDAR, or 
IMUs. After positions and orientations are acquired, the second 
step involves feeding this data to an algorithm to reason about 
the F-formation. This algorithm can be naive, such as using the 
distances between people, or more complex, utilizing Support 
Vector Machines (SVM), Graph-Cuts, Hidden Markov Models 
(HMM), and so on. 

Some research builds upon this general method by incorporat- 
ing additional contextual information about human proxemics, 
adding additional data processing steps, and/or collecting 
multimodal data. For example, Brdiczka et al. [28] used HMMs 
to detect F-formations based on speech activity detection; an 
automatic speech detector detects which individual stops and 
starts speaking. Choudhury and Pentland [29] used “sociometer,” 
a custom-built sensor device with a microphone, accelerometer, 
and IR proxemics sensor, which extracts data for use as an input 
to a HMM. Hung et al. [42] used a single accelerometer to 
understand coordinated body movements that can be indicative 
of being in a conversation. Marquardt et al. [20] used a ceiling- 
mounted Microsoft Kinect depth sensor to detect ellipses of 
participants and reason about the F-formation based on the 
distance and orientation of the participants. Although all these 
approaches improve F-formation detection, they require addi- 
tional sensors on participants or augmented environments,which 
is not feasible in many real-world scenarios. 

As an alternative approach, many vision-based algorithms 
only require a single camera and thus present a more practical
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solution for robots. This approach is less invasive, but comes 
with the cost of increased data noise and may require more 
complex identification methods. For example, [43] use the 
Hough-Based tracker to extract participant positions and 
orientations and a Structural SVM to detect the F-formations, 
while [44] used Markov Random Fields. 

After detecting the positions and orientations of participants, 
there are several solutions for reasoning about F-formations, 
such as voting schemes [11], [12], [45], graph-cuts [13], and 
dominant sets [21], [46]. In recent years, there have also been 
efforts to use deep learning approaches to detect F-formations 
automatically [22], [47]. 

While this research has greatly enhanced our ability to 
detect and reason about conversational groups, all methods still 
involve a certain amount of noise and error. For systems that 
leverage understandings of conversational groups deployed in 
the real world (e.g., social robots), any classification errors 
may prove extremely detrimental in terms of both social (e.g., 
a robot making obvious social miscues or participants feeling 
ignored) and physical (e.g., a robot positioning itself in an 
uncomfortable proxemic space or even attempting to navigate 
through the location of an undetected participant) outcomes. In 
this work, we introduce an approach that may help remedy such 
situations by reducing our reliance on the assumption that we 
have accurately detected all participants in a F-formation. To 
our knowledge, no prior work has used the position of people 
as a predictive sanity check for reasoning about F-formation 
probability. Below, we describe our method for developing 
such systems that may improve outcomes for any existing 
F-formation detection algorithm for conversational groups.

III.  A PPROACH

The fundamental principle on which this paper is based 
is our observation that participants in conversational groups 
tend to occupy certain spatial regions within F-formations. We 
find that these regions adapt with group size and are highly 
reliable predictors of likely participant locations. Fig. 2 visually 
illustrates these regions, which are spatial areas defined by 
probability distributions corresponding to the likely positions 
of people in a F-formation of a given size. We determined 
these probability distributions through a data-driven analysis 
of two open data sets (the SALSA and Babble data sets; for 
more detail on these data sets see Section V). For example, for 
F-formations of size 3, we analyzed all size-3 groups across 
both data sets to identify the most likely positions of people 
in any size-3 F-formation. This analysis revealed that regions 
were generally consistent for groups of the same size and 
varied predictably as group size changed. More details on this 
process of region identification are found in Section IV. 

We can leverage an understanding of such regions to help 
validate detected F-formations and/or reveal the possibility 
of errors in a detection algorithm. This knowledge may 
improve F-formation detection in two principle ways, which we 
demonstrate across two datasets and a laboratory experiment 
and implement on a social robot as a systems contribution. 
First, we can use knowledge of these regions to predict the size

of a F-formation when it is partially observed. For example, 
if an algorithm suggests a potential F-formation, our classifier 
can independently predict the size of the F-formation in a 
reliable manner, which may be used as a sanity check for 
the original F-formation detection algorithm. Second, if there 
is any inconsistency between a given F-formation and our 
“F-formation Size Predictor” classifier, the likely location of 
any people the original algorithm missed can be determined. 
As a proof-of-concept, we explore a subset of this problem, 
where the ground truth is that the original F-formation detection 
algorithm missed one person, for example when a F-formation 
exists with four individuals (robots or people), but was classified 
by an algorithm as a F-formation of size three. In such a case, 
our algorithm can predict that: (1) the original classification of 
three individuals is incorrect and that the F-formation is more 
likely to be of size four and (2) where the missing participant 
is likely to be located. A visual example of such a situation is 
provided in Fig. 1, where a F-formation prediction algorithm 
recognized two people as being within a conversational group 
with the robot, but the third person was not detected; our 
classifiers can recognize that a person was missed and predict 
the region where the missing person is likely to be standing. 

To accomplish this classification, we first manually assigned 
discrete class labels to each potential region for various F- 
formation sizes based on our original region analysis (e.g., 
region “A,” “B,” or “C” for a size-3 F-formation). Each class 
label was defined using the center (x,y) coordinate of the 
corresponding region probability distribution and a manually 
specified threshold distance (i.e., radius) from this center. At a 
high level, our approach in constructing our classifiers was to 
treat one individual as an anchor and evaluate the observed F- 
formation (which may contain missing data) from the anchor’s 
perspective (i.e., transforming all observations into a coordinate 
system where the anchor represented the origin). From there, 
we compare the observed position of participants to the region 
locations where we would expect participants to be to determine 
whether we may have missed any individuals (and if so, where 
they are likely to be). The choice of which individual is 
treated as an anchor is arbitrary (our system is robust to any 
decision) and, in our deployments, we use the robot involved 
in conversational groups as the anchor since observed data is 
already captured in the robot’s frame of reference and thus 
does not require any extra coordinate transformations. More 
details on this classification process are found in Section VI. 

We evaluated our classifiers on two data sets and in an in- 
person laboratory experiment with a social robot, examining 
predictions on true F-formation size and predictions on missing 
participant location. For size, we found that our classifier 
could produce accurate predictions of true group size given 
information on only two participants (i.e., given the positions 
and orientations of only two individuals, we could predict 
whether the F-formation was actually a group of size 3, 4, 5, 6, 
or 7). For participant location, we first validated our approach 
in simulation by providing the classifier with F-formations 
where one individual was randomly removed (simulating an 
algorithm missing a person, possibly due to a sensor error or
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Fig. 2: Heatmaps illustrating probabilistic regions (i.e., participant locations) in different F-formation sizes from the SALSA 
and Babble data sets. * indicates where annotation discrepancies occur following manual checks.

occlusion). The classifier then had to predict the region class 
label where the missing person was likely located and we again 
found promising accuracy (between 80–100%). We validated 
these results by implemented our system on a social robot 
and conducting a small laboratory experiment, finding that 
our system resulted in 92.85% accuracy identifying a missing 
participant in a real-world conversational group.

IV. R EGION I DENTIFICATION

This section introduces the notation used for the rest of the 
paper and the operations applied in analyzing data to identify 
regions. The main approach here is to normalize the data so 
that F-formations can be compared to one another. 

The set of all F-formations of size n in a dataset is F n . Each 
set will contain several examples of F-formations of size n, i.e.,
F n = {f 1 ,  f  2,  f  3, ...}, where f i is a snapshot of a F-formation
of size n Each instance f i has n participants, so the set of
f i = {P 1,  P  2, ..., P  n}. We adopt a top-down view of the scene
(i.e., an x,y coordinate system) in considering participant poses
(positions and orientations). Thus, each participant P m has
three values P m = {x m ,  y  m ,  ✓m }, where x and y are the 2D
coordinates for the participant position and ✓ is the orientation. 

To compare various F-formations of equal size, we transform
each f i by choosing an anchor participant P A, selected from
all P n . In essence, once the F-formation is transformed relative 
to this anchor, it is seen from that individual’s perspective. 
Choosing an anchor P A and transforming the F-formation with 
respect to them helps in two ways: (1) it simplifies the process 
of comparing F-formations to one another and (2) it continues 
the robot-centric perspective that motivates this work (i.e., in 
our deployment the robot is the anchor as is commonly used 
in human-robot scenarios [48]). The anchor can be selected 
randomly; in training our classifiers, we examined scenes using 
each individual as a potential anchor. To illustrate, Figure 2
shows regions for each f i by selecting the participant with
the smallest x in the captured frame P A = P m|m ! M in  x m .
From this anchor, a transformation matrix M T can be used
such that P A is translated and rotated to (0, 0,  ✓ = 0) and 
applied to f i to determine a new transformed F-formation

f
0

i = M R⇥f i , where f
0

i is the original F-formation transformed 
with the respect to P A (i.e., the F-formation as seen from P A ’s
perspective). Eqn. 1 provides the translation matrix:

"
x

0

m

y
0

m

#
= 

"
x m

y m

#
�

"
x A

y A

#
(1)

If the orientation of the participants in the F-formation dataset 
is accurate, the rotation matrix R( �✓A ) is used:

R( �✓)  =  


cos ✓ sin ✓
� sin ✓ cos ✓

�
, ✓ is the rotation angle (2)

f
0

n = R ( �✓A ) ⇤ f n (3)

If the orientation data is not reliable or there are inconsisten- 
cies in the dataset, regions can still be identified and clustered; 
however, it is not suitable for training classifiers due to the 
missing feature. To rectify this, additional calculation steps can 
be used in pre-processing. This can be solved as an optimization 
problem (Eqn. 4) with all F-formations rotated such that they 
have the minimum distance and angle from each other. This 
equation provides ✓⇤, the new rotation angle for each frame.
First, f i is selected as a referenced F-formation (F Ref ). This
F-formation can be any arbitrary frame in the F n set. The only
condition is that the F-formation selected for F Ref is manually
checked for annotation and ground truth accuracy. Our general 
reason for proposing ✓⇤ is an approach for calculating group 
patterns even in a dataset that is noisy/error-prone without 
having to manually correct many errors.

✓⇤ =
⇡

min
✓= �⇡

(Distance(R (✓) ⇤ f n ) � f Ref ) (4)

f
00

n = R ( �✓⇤) ⇥ f
0

n (5)

Eqn. 5 takes f
0

n, the outcome of Eqn. 3, and produces the 
final product, F 

00

n . This process is applied to all frames to
produce the translated set. For the data in this paper, we found
that the manual check for F Ref worked well. However, we
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note that the selected F Ref could be subjective since it relies 
on a human annotation. To address this issue, after a run of 
optimization, a new F Ref can be calculated using the average
of each set of F-formations of the same size in f

00

n , which
makes the F Ref selection more robust to noise.

The final processing step applied to the data is to convert 
from discrete points to a continuous probability space. This can 
help in two ways: (1) a single point is a poor representation 
of an individual’s body shape so there is a need to represent 
participants using an area rather than a discrete point and
(2) having a normal distribution helps to counter noise and 
small variations of human movements while they are in a 
conversational group. We use a 2-D Gaussian function, as 
shown in Eqn. 6, to fill the adjacent area around the data points.
A circular distribution is used to represent the possibility for 
people to rotate in any direction from the point at which they 
are standing. An average adult shoulder width is approximately
40 cm [49], so � = 20cm is adopted for the distribution.

P (x, y)  =  e 
�
✓

(x �x 0 ) 
2

2 �2 +
(y �y 0 ) 

2

2 �2

◆

(6)

Using this process, we analyzed two open-source data sets 
to calculate probabilistic regions for F-formations of size 3–7.

V. D ATASETS

This section describes the two datasets used for identifying 
regions and training/testing the classifiers in our system. For 
training and testing, the datasets were randomly split 80:20 into 
training and testing sets, respectively. We followed standard 
practice in F-formation detection of splitting F-formation 
instances into different frames with some frames used in 
training and others in testing [22], [50]. We present two 
independent classifiers: one for F-formation size (Sec. VI-A), 
and another for prediction missing person location (Sec. VI-B). 

Many datasets are available for studying F-formations, such 
as Match & Mingle [51], CoffeeBreak [45], Cocktail [52], 
and Panoptic [53]. The SALSA [54] and Babble [55] datasets 
were chosen for exploration in this paper because they both 
include position and orientation data, include the number of 
annotated F-formations, and contain a variety of different F- 
formations of different sizes (e.g., 5 different F-formations 
of size 3 in Babble). As described in Sec. I, there are many 
possible variations that an F-formation of size 2 can take and 
there is a strong correlation between the task and the participant 
positions for dyadic interactions. As such, for this work, we 
focus only on F-formations with a size of 3 or greater (i.e., 
corresponding to a robot and at least two other people).

A. The SALSA Dataset
The SALSA (Synergetic sociAL Scene Analysis) dataset [54] 

is an open dataset for studying group behavior and social signal 
processing. SALSA was recorded using four synchronized static 
RGB cameras (1024x768 resolution) operating at 15 frames per 
second. In addition to the recording, SALSA contains position, 
pose, and F-formation annotations for every 3 seconds of data 
(i.e., one annotation every 45 frames). The authors of SALSA

used a dedicated multi-view scene annotation tool to annotate 
the position, head orientation, and body orientation of each 
individual. The authors also annotated F-formations, where a 
F-formation was characterized by the position, head, and body 
orientations of individuals. It contains data of 18 participants 
over 60 minutes, with frame annotations every three seconds. 

Among the annotated frames, we randomly divided the 
dataset into a training set (⇠80%, corresponding to roughly 
320 frames) and a testing set (⇠20%, 80 frames). 

One limitation of the SALSA dataset (and human annotated 
datasets in general) is that there are some inconsistencies 
and errors in the annotations. The SALSA data in particular 
has a variety of inconsistencies in position and orientation 
annotations. Since the orientation data is not always accurate, 
an approximation has to be provided for the orientation angle
of P A and the rest of the F-formation is transformed with
respect to that, as described in Sec. IV, Eqn. 4–5. During this 
process, the ground truth value of ✓ is not known, but because 
the relative position of people in the SALSA dataset is known, 
we can still reason about the SALSA dataset. However, since 
we cannot know the true ✓ values, it is impossible to accurately 
map F-formations from the SALSA coordinate system to the 
coordinate system of another dataset, such as Babble.

B. The Babble Dataset
The Babble dataset [55] contains highly accurate positions 

and orientations (measured via a motion-capture system) of six 
participants playing a social game named “The Resistance” [56]. 
The game session took approximately 13 minutes including 
the introduction. The dataset consists of 740 frames (4 images 
and motion capture camera data for each frame) and contains 
various F-formation groups that the Babble dataset authors 
annotated as containing 3, 4, 5, 6 or 7 participants.

VI. C LASSIFICATION

As previously described, noise and other errors can degrade 
the results of F-formation detection algorithms. This incorrect 
understanding of a scene may lead to other problems when 
used in automated systems, for example, a robot may choose
a sub-optimal action due to the error. This section outlines a 
data-driven approach for (1) predicting true F-formation sizes 
given data about only two participants (an anchor and one 
other participant) and (2) predicting where a participant missed 
by a F-formation detection algorithm is likely located. These 
classifiers may be used to validate and improve the results of 
existing F-formation detection algorithms by offering a sanity 
check and additional confidence metrics about the result and 
can be included in any further reasoning that may be performed 
by a social robot.

A. Classifier 1: F-formation Size
In this subsection, the goal is to train a classifier that uses 

the position of a single participant (P m ) relative to an anchor 
participant (P A ) to predict the size (total number of participants) 
of a F-formation:

Model  (P m 2f ) =) f 2 F n (7)
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The first step is to create compatible training samples. 
Each frame that has more than one F-formation per scene 
is deconstructed into new frames, each containing a single 
F-formation. For example, a scene in the SALSA dataset with 
five F-formations would produce five frames for each of the 
different F-formations in the original scene. Then, permutations 
with replacement of participants are taken (P  erm  r (n, 2)) to 
create pairwise data:

8i8j 2 f ! ((x i ,  y  i ), (x j ,  y  j ),  Size  f ) (8)

We ignore all instances of duplicated participants (where
i = j ) as it is not helpful to compare a participant with 
themselves. From there, we treat the first instance in each pair
resulting from Eqn. 8 as the anchor participant P A. This means
that, for example, each frame of a F-formation of size four 
would produce twelve data points (i.e., 4 ⇥ (4 � 1)): three data
points when P 0 is treated as the anchor (P A ,  P  1),  (P A , P 2),
and (P A, P 3 ), three where P 1 is the anchor, three where P 2 is
the anchor, and three where P 3 is the anchor. As the anchor
perspective is adopted consistently (i.e., becomes the origin in 
the transformed coordinates), (x i ,  y  i ) can be removed from the 
terms, resulting in final data with the form [(x j ,  y  j ),  Size  f )], 
where Size f encodes the F-formations size and was treated 
as the class variable we wished to predict. After processing 
the datasets using this technique, there are 3293 data points 
from the SALSA dataset and 2109 data points from the Babble 
dataset for the training. Five different classification models 
were evaluated, including a variety of Ensemble, KNN, SVM, 
Naive Bayes, Discriminant, and Tree algorithms.

B. Classifier 2: Missing Region

The previous classifier may be able to identify when a F- 
formation detection algorithm is inaccurate by independently 
predicting group size. In such an event (e.g., an existing 
detection algorithm identifies an F-formation with 4 people, 
but Classifier 1 predicts the true size to be 5 based on the four 
who were observed), we next describe an additional classifier 
that predicts where a missing individual is likely to be located 
to aid robot decision-making (e.g., a robot could double-check 
the identified region to see if a participant was occluded and 
thus missed in the initial detection). 

To simplify this problem, in this work we consider only “off- 
by-one” situations where there is at most a misclassification of 
one participant between the ground truth and the F-formation 
detection algorithm output. When a F-formation detection 
algorithm suggests one more person than Classifier 1 (i.e., a 
potential false positive), then the identified participant locations
can be compared with the regions for P A and size n that
denote the probability distributions for most likely participant 
locations in order to find the most probable outlier. When there 
is one person less than suggested by Classifier 1, we take the 
opposite approach, where we examine regions corresponding to 
the F-formation size suggested by Classifier 1, map identified 
participant locations to these regions, and look for the region 
that lacks a participant. First, all regions are calculated based

on the desired F-formation size and the anchor participant 
position:

Regions (P A,size=n) = {R 1 ,  R  2, ..., R  n �1 } (9)

As a reminder, regions R 1 , R 2 , ... are areas in the coordinate 
system representing probability distributions for where we
would expect participants to be located, relative to P A for
a F-formation of size n. Each region is computed from the 
aggregate data from all F-formations of size n from only 
the training portion of the dataset, calculated as a circle 
whose center coordinates is the Mean(x, y) of all participants 
recorded in that region and radius is the distance between 
Mean(x, y) and the furthest participant in the region away 
from the center (i.e., mathematical representations of the areas 
shown in Fig. 2).

To train a classifier, for each f i 2 F n in the training
dataset, n samples are created by removing one participant and 
replacing them with the R i removed label:

[F  eatures,  Label]  =  [({P 1,  P  2, ..., P  n�1 }  � {P i }),  R  i ] (10)

For each F-formation of size 3 to 7, classification models 
were trained such that the order of the features does not matter.

VII.  C LASSIFICATION R ESULTS

Table I shows the results for the “F-formation Size Classifier” 
(Sec. VI-A), which seeks to predict the size of the F-formation 
given the position of only one individual relative to the anchor. 
For both datasets, the KNN model has the highest accuracy, 
with 75.9% and 94.3% for SALSA and Babble respectively. 
This indicates that the KNN model may be used reliably when 
only knowing the positions of two people in the F-formation. 
Unfortunately, cross-validation between these two datasets is 
not possible due to a lack of ground truth orientation data in 
SALSA, as explained in Sec. V. 

The confusion matrices (Fig. 3) provide a more detailed 
look into the predictions made. Cells along the diagonal show 
the percentage of data points for which the predicted label is 
equal to the true label. Other cells indicate where incorrect 
predictions were made. It can be seen that the predictions are 
consistently reliable for the Babble dataset. For the SALSA 
dataset, there is confusion between between F-formations of 
size 5 and 7 in particular, likely due to the low amount of data 
for F-formations of size 7 (3 annotated frames).

TABLE I: Accuracy for predicting F-formation sizes given 
the position of the anchor participant and another participant. 
Trained and tested on the Babble and SALSA datasets. Holdout 
validation with 20% held out.

Accuracy for:
Babble SALSA

Fine Tree 92.4% 71.0%
SVM 87.5% 72.1%

Weighted KNN 94.3% 75.9%
Bagged Trees 93.0% 75.6%
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Fig. 3: Confusion matrices for the F-formation size classifier on the SALSA (left) and Babble (right) datasets. All cell values 
are percentages. The F-formation sizes form the rows and columns of the matrices. The numbers are in percentages of total 
testing frames (not the raw number of testing frames, thus they don’t add up to the number of frames but do add up to 100).

For the “Missing Region Classifier” (Sec. VI-B), the goal 
is to predict the position of a missing person when given the 
correct size of the F-formation (as might be provided by the 
F-formation Size classifier), but an incorrect set of positions 
where one participant is omitted entirely (as might be provided 
by an existing F-formation detection algorithm). Table II shows 
that the KNN model can predict the position (i.e., region) of a 
missing person reliably in both datasets; 100% for the Babble 
dataset and 83% for the SALSA dataset. An accuracy of 100% 
in the Babble dataset raised concerns about over-fitting. We 
attribute this accuracy level to the high level of precision 
regarding measured participant positions and orientations in 
the Babble dataset and a great degree of similarity of participant 
positions for F-formations of the same size, as shown in Fig. 2. 
The results observed for the SALSA dataset may be more 
representative of typical performance for noisier data or data 
with more variability in the region positions.

VIII.  L ABORATORY VALIDATION

To better understand how our method may perform in 
practice, we validated our method in a laboratory experiment. 
We implemented our classification models in a F-formation 
reasoning system deployed on a Fetch robot (a mobile ground 
robot with a manipulator) that interacted socially with par- 
ticipants. Using an IRB-approved protocol, we recruited 8 
participants (7 females, 1 male) from the University of Colorado 
Boulder campus. We conducted a 1-hour laboratory experiment 
in which we asked participants to have a conversation with the 
Fetch. First, we asked participants to wear a special baseball 
hat with reflective markers that enabled high precision tracking 
within a Vicon motion capture space (i.e., providing ground 
truth comparisons). This allowed us to track participant head 
positions and orientations throughout the activity at 100 frames 
per second with a precision of 1mm. Then, we introduced 
participants to a social activity in which they had a casual

conversation with each other and the robot discussing their last 
vacation, favorite sports, etc. A researcher acted as a moderator 
and chose a participant at random to either leave or join the 
conversational group every 4–5 minutes, enabling us to test 
our system against groups of different sizes ranging from 3–9 
(including the robot) and explore dynamically changing groups. 

To evaluate if our system could improve F-formation 
detection, we created a scenario whereby one of the participants 
was not tracked by the robot. To accomplish this, when the 
moderator asked a random participant to leave the group, we 
had the participant remove their reflective markers so they 
were no longer visible to the robot. This untracked participant 
then returned to the conversational group. Figure 1 shows 
frames where an untracked participant enters the conversation. 
Out of the whole session, we collected 28 instances of group 
interactions, comprised of 4 samples from each F-formation 
size (3–9). For each F-formation size, 2 of the 4 samples 
consisted of instances where all participants were correctly 
tracked, while the other 2 instances represented times where 
one member of the F-formation was not wearing a reflective 
hat and thus could not be detected by the robot. Including both 
types of instances helped us test for false-positive (i.e., our 
system indicating the presence of a missing person even though 
it had actually not missed any participants) and true negatives 
(i.e., our system correctly inferring that all participants were 
currently being tracked and there are no missing participants). 

Following our experiment, two members of the research 
team manually annotated each of group interaction frames. 
The annotators separately categorized the frames by specifying 
the F-formation memberships. We compared the annotations 
for F-formation memberships across the two annotators and 
found perfect inter-rater reliability (Cohen’s kappa)  =  1. 

Results: For the laboratory validation, we used the KNN 
classifier trained on 80% of Babble and used the whole pipeline 
(both classifiers). Overall, we found that our system had an
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Babble Dataset SALSA Dataset
Accuracy for F-formation size:

3 4 5 6 7 3 4 5 6 7
Tree 100.0% 100.0% 99.0% 99.2% 99.6% 86.3% 80.0% 86.0% 86.8% 87.1%
SVM 85.6% 75.0% 100.0% 100.0% 100.0% 88.3% 73.0% 88.3% 88.3% 90.6%

Weighted KNN 100.0% 100.0% 100.0% 100.0% 100.0% 88.8% 83.6% 88.8% 91.4% 92.9%
Bagged Trees 99.6% 98.5% 100.0% 100.0% 99.6% 87.4% 82.6% 87.4% 88.3% 92.9%

TABLE II: Accuracy for predicting regions in Babble & SALSA. Holdout validation with 20% held out.

accuracy of 92.85%, calculated as the correct F-formation 
predictions divided by the total predictions. In examining our 
data, we found no instances of false positives, with all errors 
being false negatives. These mostly occurred in F-formations 
of size 3. We attribute these errors to the fact that people in a 
small group size (e.g., 3) have more room to stand compared 
to groups with more people (e.g., 7), thus regions for small 
group sizes may have greater variance. Despite these errors, 
we believe our high overall accuracy rate validates the promise 
of our approach for use in real social robot interactions.

IX. D ISCUSSION &  F  UTURE W ORK

Our results showed that the two classifiers (Sec. VI-A & 
Sec. VI-B) may improve reasoning about partially observed 
F-formations, both in an analysis on publicly available datasets 
and when implemented on a social robot that interacted with 
participants in our laboratory validation. The classifiers can 
successfully predict the size of a F-formation based on a 
partially observed scene (i.e., predicting true group size by 
observing only two participants) and can also predict where 
a missing person may be located. This could be helpful for 
social robots that interact with groups of people. We envision 
these classifiers being added to the end of a social robot’s 
F-formation detection pipeline and note that both classifiers are 
agnostic to whatever algorithms are used in the other detection 
steps. Overall, we believe such classifiers may improve the 
perception that a robot has of the world and might be used to 
guide various robot behaviors. As an example, if the robot’s 
standard F-formation detection algorithm output identifies an 
F-formation of size 3, but the output of our F-formation size 
classifier is 4, the robot could decide to use behaviors that would 
be suitable for a group of either 3 or 4 participants, it could ask 
for clarification about the group size from the participants, or it 
might attempt to use our missing region classifier to determine 
where a missing participant might be located and take a closer 
look to determine if indeed a participant was missed in its 
initial understanding of the group. 

While we recognize the importance of comparing new system 
performance against existing tools, we are unaware of any 
existing F-formation detection algorithms that can predict 
missing people, making it difficult to compare our approach to 
them. Moreover, our goal in this work is to develop systems 
that can extend, not replace, existing algorithms for F-formation 
detection (e.g., if an existing detection algorithm matches the 
output from our size classifier, the robot may have higher 
confidence that the group was correctly identified). We plan 
to explore the integration of our classifiers with existing F- 
formation detection algorithms in future work.

In constructing our second classifier, we focused on a sub- 
problem of predicting locations for missing participants where 
only one person was missing from the detected scene. In the 
future, we intend to explore the reliability of our approach 
when more than one person is missing. The overall reliability 
of the probabilistic regions across datasets makes us believe 
that predicting the locations of multiple missing participants is 
feasible, although we anticipate increases in uncertainty. 

In general, we believe that our data-driven, region-focused 
approach will be applicable for improving F-formations detec- 
tion, but acknowledge it may have poor performance on groups 
with radically different features from those our classifiers were 
trained on. For instance, if the environmental space is more 
limited or there is an object of interest, such as a table or 
poster, people are likely to position themselves differently. 
This would almost certainly have a negative effect on the 
prediction of our classifiers. An extension would be to collect 
further data in such conditions and extend the approach here 
to factor in space limitations and/or objects as additional 
inputs. Other potentially relevant aspects of conversational 
group context were also missing from the datasets we studied. 
For example, our classifiers were not trained for situations 
where an extra person may stand within the personal space 
of another participant (e.g., a child with their parent). Finally, 
we note that our experimental validation was limited in using 
only 8 participants. Currently, the COVID-19 pandemic is 
introducing extreme challenges towards studying in-person 
group interactions with robots and we hope to conduct further 
in-person experiments in the future.

X. C ONCLUSION

We presented a new approach for understanding F-formations 
by identifying “regions”—probabilistic areas where people 
are likely to stand in a group of a given size—relative to 
a single “anchor” agent (person or robot). We developed a 
system comprised of two classifiers using this insight. The first 
predicts the total number of people in a F-formation based on 
the positions of only two people in the group. In the case of an 
undetected person, the second classifier predicts that person’s 
position. Our results demonstrate the potential of our approach 
in improving how social robots may detect and reason about 
F-formations.
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